ココマス

数学・算数関連を気ままに

2020年度 センター試験 数学I 第3問

(1)
f:id:coco_math_1801:20200126185019j:plain:w300
余弦定理より,
 \cos{\angle{ABC}} = \dfrac{AB^{2}+BC^{2}-CA^{2}}{2\cdot AB\cdot BC} = \dfrac{25+36-21}{2\cdot 5\cdot 6} = \dfrac{40}{60} = \dfrac{2}{3}

 \sin{\angle{ABC}} = \sqrt{1-\left( \dfrac{2}{3} \right) ^{2}} = \sqrt{1 - \dfrac{4}{9}} = \dfrac{\sqrt{5}}{3}

 \triangle{ABC} = \dfrac{1}{2} \cdot AB\cdot BC \cdot \sin{\angle{ABC}} = \dfrac{1}{2} \cdot 5 \cdot 6 \cdot \dfrac{\sqrt{5}}{3} = 5\sqrt{5}

→ア=2, イ=3, ウ=5, エ=3, オ=5, カ=5


(2)
f:id:coco_math_1801:20200126190049j:plain:w300
(i)
 \cos{\angle{DIG}} = \dfrac{3}{5}より,
 IG: GD: DI = 3: 4: 5
 \therefore DI = GD \dfrac{5}{4} = 10
 IG = GD \dfrac{3}{4} = 6
 IF =GF - IG = 8-6 = 2

 \tan{\angle{FIH}} = 2より,
 IF:FH:HI = 1:2:\sqrt{5}
 \therefore HI = IF \cdot sqrt{5} = 2\sqrt{5}

→キ=3, ク=1


(ii)
 DH = \sqrt{HE^{2}+DE^{2}} =\sqrt{4^{2}+8^{2}} = 4\sqrt{5}

 HF: FI: IH =2:1:\sqrt{5}
 DE:EH:HD = 8:4:4\sqrt{5} =2:1:\sqrt{5}
 DG:GI:ID = 8:6:10=4:3:5
 DH:HI:ID =4\sqrt{5}:2\sqrt{5}:10 = 2:1:\sqrt{5}
 \therefore \triangle{HFI}と相似なものは,
 \triangle{DEH} \triangle{DHI}
また,  \tan{\angle{DIG}}=\dfrac{8}{6} =\dfrac{4}{3}
 \tan{\angle{DIH}} = \dfrac{4\sqrt{5}}{2\sqrt{5}} =2
 \therefore \tan{\angle{DIG}} < \tan{\angle{DIH}}より,
 \angle{DIG} < \angle{DIH}

→ケ=1, コ=3


(iii)
f:id:coco_math_1801:20200126192634j:plain:w300
 \angle{DHI} = 90^{\circ}より,  DIは外接円の直径
 \therefore外接円の半径は,
 \dfrac{1}{2} \cdot DI = 5

 \triangle{DHI}=\dfrac{1}{2} \cdot DH \cdot HI = \dfrac{1}{2} \cdot 4\sqrt{5} \cdot 2\sqrt{5} = 20
内接円の半径を rとおくと,
 \dfrac{1}{2}\left(DH+HI+ID \right)r =20
 \Leftrightarrow r = \dfrac{2\cdot 20}{4\sqrt{5}+2\sqrt{5}+10}=\dfrac{40}{2\sqrt{5}(3+\sqrt{5})}=\dfrac{4\sqrt{5}(3-\sqrt{5})}{4} =3\sqrt{5}-5

→サ=5, シ=3, ス=5, セ=5


(3)
f:id:coco_math_1801:20200126195923j:plain:w300
DJ = \sqrt{\left(4\sqrt{5} \right)^{2} + 8^{2}} = 12

f:id:coco_math_1801:20200126195031j:plain:w300
 IJ =\sqrt{8^2+\left(2\sqrt{5}\right)^2} = 2\sqrt{21}

f:id:coco_math_1801:20200126200139j:plain:w300
 \triangle{IDJ} \triangle{ABC}を2倍に拡大したものだから,
 \triangle{IDJ} = 2^{2} \cdot \triangle{ABC} = 4\cdot 5\sqrt{5}=20\sqrt{5}

四面体 JDHIの体積を Vとおくと,
 V = \dfrac{1}{3}\triangle{DHI} \cdot HJ = \dfrac{1}{3}\triangle{IDJ}\cdot HK
 \Leftrightarrow HK = HJ \cdot \dfrac{\triangle{DHI}}{\triangle{IDJ}}=8\cdot \dfrac{20}{20\sqrt{5}}=\dfrac{8\sqrt{5}}{5}

→ソタ=20, チ=5, ツ=8, テ=5, ト=5